八年級數學上冊第五章知識點歸納圖片 八年級上冊數學第五章知識點總結

八年級數學上冊第五章知識點歸納圖片 八年級上冊數學第五章知識點總結

日期:2023-02-21 15:11:45    编辑:网络投稿    来源:互联网

八年級數學上冊第五章知識點歸納  在我們上學期間,大家都沒少背知識點吧?知識點就是一些常考的內容,或者考試經常出題的地方。掌握知識點是我們提高成績的關鍵!以下是小編精心

八年級數學上冊第五章知識點歸納

  在我們上學期間,大家都沒少背知識點吧?知識點就是一些常考的內容,或者考試經常出題的地方。掌握知識點是我們提高成績的關鍵!以下是小編精心整理的八年級數學上冊第五章知識點歸納,供大家參考借鑒,希望可以幫助到有需要的朋友。

八年級數學上冊第五章知識點歸納

  八年級數學上冊第五章知識點歸納1

  1、二元一次方程

  ①二元一次方程

  含有兩個未知數,并且所含未知數的項的次數都是1的整式方程叫做二元一次方程。

  ②二元一次方程的解

  適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。

  2、二元一次方程組

  ①含有兩個未知數的兩個一次方程所組成的一組方程,叫做二元一次方程組。

  ②二元一次方程組的解

  二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。

  ③二元一次方程組的解法

  代入(消元)法

  加減(消元)法

  ④一次函數與二元一次方程(組)的關系:

  一次函數與二元一次方程的關系:

  直線y=kx+b上任意一點的坐標都是它所對應的二元一次方程kx- y+b=0的解

  一次函數與二元一次方程組的關系:

  二元一次方程組

  的解可看作兩個一次函數

  和 的圖象的交點。

  當函數圖象有交點時,說明相應的二元一次方程組有解;

  當函數圖象(直線)平行即無交點時,說明相應的二元一次方程組無解。

  八年級數學上冊第五章知識點歸納2

  1、實數的概念及分類

  ①實數的分類

  ②無理數

  無限不循環小數叫做無理數。

  在理解無理數時,要抓住“無限不循環”這一時之,歸納起來有四類:

  開方開不盡的數,如 √7 ,3 √2等;

  有特定意義的數,如圓周率π,或化簡后含有π的數,如π /?+8等;

  有特定結構的數,如0.1010010001…等;

  某些三角函數值,如sin60°等

  2、實數的倒數、相反數和絕對值

  ①相反數

  實數與它的相反數是一對數(只有符號不同的兩個數叫做互為相反數,零的相反數是零),從數軸上看,互為相反數的兩個數所對應的點關于原點對稱,如果a與b互為相反數,則有a+b=0,a=-b,反之亦成立。

  ②絕對值

  在數軸上,一個數所對應的點與原點的距離,叫做該數的絕對值。|a|≥0。0的絕對值是它本身,也可看成它的相反數,若|a|=a,則a≥0;若|a|=-a,則a≤0。

  ③倒數

  如果a與b互為倒數,則有ab=1,反之亦成立。倒數等于本身的數是1和-1。0沒有倒數。

  ④數軸

  規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,要注意上述規定的三要素缺一不可)。

  解題時要真正掌握數形結合的思想,理解實數與數軸的點是一一對應的,并能靈活運用。

  ⑤估算

  3、平方根、算數平方根和立方根

  ①算術平方根

  一般地,如果一個正數x的平方等于a,即x2=a,那么這個正數x就叫做a的算術平方根。特別地,0的算術平方根是0。

  性質:正數和零的算術平方根都只有一個,0的算術平方根是0。

  ②平方根

  一般地,如果一個數x的平方等于a,即x2=a,那么這個數x就叫做a的平方根(或二次方根)。

  性質:一個正數有兩個平方根,它們互為相反數;零的平方根是零;負數沒有平方根。

  開平方求一個數a的平方根的運算,叫做開平方。注意 √a的雙重非負性:√a≥0 ; a≥0

  ③立方根

  一般地,如果一個數x的立方等于a,即x3=a,那么這個數x就叫做a 的立方根(或三次方根)。

  表示方法:記作 3 √a

  性質:一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零。

  注意:- 3 √a=3 √-a,這說明三次根號內的負號可以移到根號外面。

  4、實數大小的比較

  ①實數比較大小

  正數大于零,負數小于零,正數大于一切負數;

  數軸上的兩個點所表示的數,右邊的總比左邊的大;

  兩個負數,絕對值大的反而小。

  ②實數大小比較的幾種常用方法

  數軸比較:在數軸上表示的兩個數,右邊的數總比左邊的數大。

  求差比較:設a、b是實數 a-b>0a>b; a-b=0a=b; a-b<0a<b 。

  求商比較法:設a、b是兩正實數,

  絕對值比較法:設a、b是兩負實數,則∣a∣>∣b∣a<b。

  平方法:設a、b是兩負實數,則 a2>b2a<b 。

  5、算術平方根有關計算(二次根式)

  ①含有二次根號“ √ ”;被開方數a必須是非負數。

  ②性質:

  ③運算結果若含有“ √ ”形式,必須滿足:

  被開方數的因數是整數,因式是整式

  被開方數中不含能開得盡方的因數或因式

  6、實數的.運算

  ①六種運算:加、減、乘、除、乘方 、開方。

  ②實數的運算順序

  先算乘方和開方,再算乘除,最后算加減,如果有括號,就先算括號里面的。

  ③運算律

  加法交換律 a+b= b+a

  加法結合律 (a+b)+c= a+( b+c )

  乘法交換律 ab= ba

  乘法結合律 (ab)c = a( bc )

  乘法對加法的分配律 a( b+c )=ab+ac

  八年級數學上冊第五章知識點歸納3

  1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.

  2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.

  3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.

  4.通分的依據:分式的基本性質.

  5.通分的關鍵:確定幾個分式的公分母.

  通常取各分母的所有因式的次冪的積作公分母,這樣的公分母叫做最簡公分母.

  6.類比分數的通分得到分式的通分:

  把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

  7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

  同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。

  8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然后再加減.

  9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括號.

  10.對于整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.

  11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運算簡化.

  12.作為最后結果,如果是分式則應該是最簡分式.

  八年級數學上冊第五章知識點歸納4

  一、函數:

  一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數,其中x是自變量,y是因變量。

  二、自變量取值范圍

  使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實數),分式(分母不為0)、二次根式(被開方數為非負數)、實際意義幾方面考慮。

  三、函數的三種表示法及其優缺點

  (1)關系式(解析)法

  兩個變量間的函數關系,有時可以用一個含有這兩個變量及數字運算符號的等式表示,這種表示法叫做關系式(解析)法。

  (2)列表法

  把自變量x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。

  (3)圖象法

  用圖象表示函數關系的方法叫做圖象法。

  四、由函數關系式畫其圖像的一般步驟

  (1)列表:列表給出自變量與函數的一些對應值

  (2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點

  (3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。

  五、正比例函數和一次函數

  1、正比例函數和一次函數的概念

  一般地,若兩個變量x,y間的關系可以表示成(k,b為常數,k0)的形式,則稱y是x的一次函數(x為自變量,y為因變量)。

  特別地,當一次函數中的b=0時(即)(k為常數,k0),稱y是x的正比例函數。

  2、一次函數的圖像:所有一次函數的圖像都是一條直線

  3、一次函數、正比例函數圖像的主要特征:一次函數 的圖像是經過點(0,b)的直線;正比例函數 的圖像是經過原點(0,0)的直線。

【八年級數學上冊第五章知識點歸納】相關文章:

初二上冊數學第五章知識點歸納復習01-19

數學上冊實數的知識點歸納01-19

人教版初一上冊數學第五章線與角知識點歸納07-24

初二數學上冊知識點歸納07-26

初二數學上冊的知識點歸納07-12

八年級數學上冊知識點歸納10-31

八年級上冊數學實數知識點歸納01-19

八年級上冊數學知識點歸納06-29

八年級數學上冊知識點積累歸納11-17