數學手抄報圖片素材簡單又美觀四年級 數學手抄報圖片素材簡單又美觀三年級

數學手抄報圖片素材簡單又美觀四年級 數學手抄報圖片素材簡單又美觀三年級

日期:2023-03-10 17:39:02    编辑:网络投稿    来源:互联网

數學手抄報圖片素材簡單又美觀 數學知識與我們的生活息息相關,為了更好的學習數學知識我們可以做數學手抄報。下面是百分網小編找來的數學手抄報資料,一起來看下吧!  簡潔

數學手抄報圖片素材簡單又美觀

 數學知識與我們的生活息息相關,為了更好的學習數學知識我們可以做數學手抄報。下面是百分網小編找來的數學手抄報資料,一起來看下吧!

  簡潔的數學手抄報

數學手抄報

數學手抄報

數學手抄報

數學手抄報

數學手抄報

  數學手抄報內容:華羅庚的故事

  有一次,他跟鄰居家的孩子一起出城去玩,他們走著走著;忽然看見路旁有座荒墳,墳旁有許多石人、石馬。這立刻引起了華羅庚的好奇心,他非常想去看個究竟。于是他就對鄰居家的孩子說:

  “那邊可能有好玩的,我們過去看看好嗎?”

  鄰居家的孩子回答道:“好吧,但只能呆一會兒,我有點害怕。”

  膽大的華羅庚笑著說:“不用怕,世間是沒有鬼的。”說完,他首先向荒墳跑去。

  兩個孩子來到墳前,仔細端詳著那些石人、石馬,用手摸摸這兒,摸摸那兒,覺得非常有趣。愛動腦筋的華羅庚突然問鄰居家的孩子:“這些石人、石馬各有多重?”

  鄰居家的孩子迷惑地望著他說:"我怎么能知道呢?你怎么會問出這樣的傻問題,難怪人家都叫你‘羅呆子’。”

  華羅庚很不甘心地說道:“能否想出一種辦法來計算一下呢?”

  鄰居家的孩子聽到這話大笑起來,說道:“等你將來當了數學家再考慮這個問題吧!不過你要是能當上數學家,恐怕就要日出西山了。”

  華羅庚不顧鄰家孩子的嘲笑,堅定地說:“以后我一定能想出辦法來的。”

  當然,計算出這些石人、石馬的重量,對于后來果真成為數學家的華羅庚來講,根本不在話下。

  金壇縣城東青龍山上有座廟,每年都要在那里舉行廟會。少年華羅庚是個喜愛湊熱鬧的人,凡是有熱鬧的地方都少不了他。有一年華羅庚也同大人們一起趕廟會,一個熱鬧場面吸引了他,只見一匹高頭大馬從青龍山向城里走來,馬上坐著頭插羽毛、身穿花袍的“菩薩”。每到之處,路上的老百姓納頭便拜,非常虔誠。拜后,他們向“菩薩”身前的小罐里投入錢,就可以問神問卦,求醫求子了。

  華羅庚感到好笑,他自己卻不跪不拜“菩薩”。站在旁邊的大人見后很生氣,訓斥道:

  “孩子,你為什么不拜,這菩薩可靈了。”

  “菩薩真有那么靈嗎?”華羅庚問道。

  一個人說道:“那當然,看你小小年紀千萬不要冒犯了神靈,否則,你就會倒楣的。”

  “菩薩真的萬能嗎?”這個問題在華羅庚心中盤旋著。他不相信一尊泥菩薩真能救苦救難。

  廟會散了,看熱鬧的老百姓都回家了。而華羅庚卻遠遠地跟蹤著“菩薩”。看到“菩薩”進了青龍山廟里,小華羅庚急忙跑過去,趴在門縫向里面看。只見 “菩薩”能動了,他從馬上下來,脫去身上的花衣服,又順手抹去臉上的妝束。門外的華庚驚呆了,原來百姓們頂禮膜拜的“菩薩”竟是一村民裝扮的。

  華羅庚終于解開了心中的疑團,他將“菩薩”騙人的事告訴了村子里的每個人,人們終于恍然大悟了。從此,人們都對這個孩子刮目相看,再也無人喊他“羅呆子”了。

  數學手抄報資料:數學在機器學習中的重要性

  Linear Algebra (線性代數) 和 Statistics (統計學)是最重要和不可缺少的。這代表了Machine Learning中最主流的兩大類方法的基礎。一種是以研究函數和變換為重點的代數方法,比如Dimension reduction,feature extraction,Kernel等,一種是以研究統計模型和樣本分布為重點的統計方法,比如Graphical model, Information theoretical models等。它們側重雖有不同,但是常常是共同使用的,對于代數方法,往往需要統計上的解釋,對于統計模型,其具體計算則需要代數的幫助。 以代數和統計為出發點,繼續往深處走,我們會發現需要更多的數學。

  Calculus (微積分),只是數學分析體系的基礎。其基礎性作用不言而喻。Learning研究的大部分問題是在連續的度量空間進行的,無論代數還是統計,在研究優化問題的時候,對一個映射的微分或者梯度的分析總是不可避免。而在統計學中,Marginalization和積分更是密不可分——不過,以解析形式把積分導出來的情況則不多見。

  Partial Differential Equation (偏微分方程),這主要用于描述動態過程,或者仿動態過程。這個學科在Vision中用得比Learning多,主要用于描述連續場的運動或者擴散過程。比如Level set, Optical flow都是這方面的典型例子。

  Functional Analysis (泛函分析), 通俗地,可以理解為微積分從有限維空間到無限維空間的拓展——當然了,它實際上遠不止于此。在這個地方,函數以及其所作用的對象之間存在的對偶關系扮演了非常重要的角色。Learning發展至今,也在向無限維延伸——從研究有限維向量的問題到以無限維的函數為研究對象。Kernel Learning 和 Gaussian Process 是其中典型的例子——其中的核心概念都是Kernel。很多做Learning的人把Kernel簡單理解為Kernel trick的運用,這就把kernel的意義嚴重弱化了。在泛函里面,Kernel (Inner Product) 是建立整個博大的代數體系的根本,從metric, transform到spectrum都根源于此。

  Measure Theory (測度理論),這是和實分析關系非常密切的學科。但是測度理論并不限于此。從某種意義上說,Real Analysis可以從Lebesgue Measure(勒貝格測度)推演,不過其實還有很多別的測度體系——概率本身就是一種測度。測度理論對于Learning的意義是根本的,現代統計學整個就是建立在測度理論的基礎之上——雖然初級的概率論教科書一般不這樣引入。

  在看一些統計方面的文章的時候,你可能會發現,它們會把統計的公式改用測度來表達,這樣做有兩個好處:所有的推導和結論不用分別給連續分布和離散分布各自寫一遍了,這兩種東西都可以用同一的`測度形式表達:連續分布的積分基于Lebesgue測度,離散分布的求和基于計數測度,而且還能推廣到那種既不連續又不離散的分布中去(這種東西不是數學家的游戲,而是已經在實用的東西,在Dirchlet Process或者Pitman-Yor Process里面會經常看到)。

  即使是連續積分,如果不是在歐氏空間進行,而是在更一般的拓撲空間(比如微分流形或者變換群),那么傳統的黎曼積分(就是大學一年級在微積分課學的那種)就不work了,你可能需要它們的一些推廣,比如Haar Measure或者Lebesgue-Stieltjes積分。

  Topology(拓撲學),這是學術中很基礎的學科。它一般不直接提供方法,但是它的很多概念和定理是其它數學分支的基石。看很多別的數學的時候,你會經常接觸這樣一些概念:Open set / Closed set,set basis,Hausdauf, continuous function,metric space, Cauchy sequence, neighborhood, compactness, connectivity。很多這些也許在大學一年級就學習過一些,當時是基于極限的概念獲得的。如果,看過拓撲學之后,對這些概念的認識會有根本性的拓展。

  比如,連續函數,當時是由epison法定義的,就是無論取多小的正數epsilon,都存在xxx,使得xxx。這是需要一種metric去度量距離的,在general topology里面,對于連續函數的定義連坐標和距離都不需要——如果一個映射使得開集的原像是開集,它就是連續的——至于開集是基于集合論定義的,不是通常的開區間的意思。這只是最簡單的例子。當然,我們研究learning也許不需要深究這些數學概念背后的公理體系,但是,打破原來定義的概念的局限在很多問題上是必須的——尤其是當你研究的東西它不是在歐氏空間里面的時候——正交矩陣,變換群,流形,概率分布的空間,都屬于此。

  Differential Manifold (微分流形), 通俗地說它研究的是平滑的曲面。一個直接的印象是它是不是可以用來fitting一個surface什么的——當然這算是一種應用,但是這是非常初步的。本質上說,微分流形研究的是平滑的拓撲結構。一個空間構成微分流形的基本要素是局部平滑:從拓撲學來理解,就是它的任意局部都同胚于歐氏空間,從解析的角度來看,就是相容的局部坐標系統。當然,在全局上,它不要求和歐氏空間同胚。它除了可以用于刻畫集合上的平滑曲面外,更重要的意義在于,它可以用于研究很多重要的集合。

  一個n-維線性空間的全部k-維子空間(k < n)就構成了一個微分流形——著名的Grassman Manifold。所有的標準正交陣也構成一個流形。一個變換群作用于一個空間形成的軌跡(Orbit) 也是通常會形成流形。在流形上,各種的分析方法,比如映射,微分,積分都被移植過來了。前一兩年在Learning里面火了好長時間的Manifold Learning其實只是研究了這個分支的其中一個概念的應用: embedding。其實,它還有很多可以發掘的空間。

  Lie Group Theory (李群論),一般意義的群論在Learning中被運用的不是很多,群論在Learning中用得較多的是它的一個重要方向Lie group。定義在平滑流行上的群,并且其群運算是平滑的話,那么這就叫李群。因為Learning和編碼不同,更多關注的是連續空間,因為Lie group在各種群中對于Learning特別重要。各種子空間,線性變換,非奇異矩陣都基于通常意義的矩陣乘法構成李群。在李群中的映射,變換,度量,劃分等等都對于Learning中代數方法的研究有重要指導意義。

【數學手抄報圖片素材簡單又美觀】相關文章:

1.簡單又美觀的數學手抄報圖片

2.簡單又美觀的數學手抄報圖片大全

3.數學手抄報邊框簡單又美觀

4.數學手抄報圖片簡單又美觀

5.生物手抄報圖片素材簡單又美觀

6.節水小報圖片素材簡單又美觀

7.春節小報圖片素材簡單又美觀

8.簡單美觀的英語手抄報邊框圖片素材